#if !defined POSIX_SHARED_MEM_BUFFER_H && defined __unix__ #define POSIX_SHARED_MEM_BUFFER_H #include #include #include #include #include #include #include #include #include #include "../../global/trace.h" #include "mem_buffer_accessor.h" /** * @brief In-process memory buffer. */ template class CSharedMemBuffer : public TAccessor { public: /** * @brief Default constructor * @param[in] uiSize Optional size of the buffer. If zero, a default buffer size of 10k is configured. * @param[in] rssName Optional name to be used for the connection. If empty, a random name is generated. * @param[in] bServer Optional boolean indicating whether the connection is a server (true), which initiates the connection, or * a client (false), which opens an existing connection. */ CSharedMemBuffer(uint32_t uiSize = 0, const std::string& rssName = std::string(), bool bServer = true); /** * @brief Connection constructor * @param[in] rssConnectionString Reference to string with connection information. */ CSharedMemBuffer(const std::string& rssConnectionString); /** No copy constructor */ CSharedMemBuffer(const CSharedMemBuffer&) = delete; /** No move constructor */ CSharedMemBuffer(CSharedMemBuffer&&) = delete; /** * @brief Default destructor */ ~CSharedMemBuffer(); /** No copy-assignment operator */ CSharedMemBuffer& operator=(const CSharedMemBuffer&) = delete; /** No move-assignment operator */ CSharedMemBuffer& operator=(CSharedMemBuffer&&) = delete; /** * @brief Detach the buffer. Overload of CMemBufferAccessorBase::Detach. * @details The detach function detaches the shared memory without deleting the memory. This keeps the memory alive for reuse. */ virtual void Detach() override; /** * @brief Return the connection string to connect to this shared memory. * @return The connection string to connect to this buffer. */ std::string GetConnectionString() const; /** * @brief Trigger listener that a write operation was completed. */ void TriggerDataSend() override; /** * @brief Wait for a write operation to be completed. * @param[in] uiTimeoutMs The amount of time (in ms) to wait for a trigger. * @return Returns 'true' when data was stored, 'false' when a timeout occurred. */ bool WaitForData(uint32_t uiTimeoutMs) const override; /** * @brief Trigger listener that a read operation was completed. */ void TriggerDataReceive() override; /** * @brief Wait for a read operation to be completed. * @param[in] uiTimeoutMs The amount of time (in ms) to wait for a trigger. * @return Returns 'true' when data was stored, 'false' when a timeout occurred. */ bool WaitForFreeSpace(uint32_t uiTimeoutMs) const override; /** * @brief Return the last reported error. * @return Error string. */ std::string GetError() const { return m_ssError; } /** * @brief Get the size of the buffer. * @return Returns the size of the buffer. */ uint32_t GetSize() const { return m_uiSize; } /** * @brief Get the name of the buffer. * @return Returns the name of the buffer. */ std::string GetName() const { return m_ssName; } private: uint32_t m_uiSize = 0u; ///< Size of the shared memory buffer. int m_iFileDescr = 0; ///< File descriptor of the shared memory. std::string m_ssName; ///< Name of the shared memory. uint8_t* m_pBuffer = nullptr; ///< Pointer to the mapped buffer. std::string m_ssSyncTx; ///< Name of the signalling event. sem_t* m_pSemaphoreTx = nullptr; ///< Semaphore to trigger written. std::string m_ssSyncRx; ///< Name of the signalling event. sem_t* m_pSemaphoreRx = nullptr; ///< Semaphore to trigger written. std::string m_ssError; ///< The last reported error. bool m_bServer = false; ///< Set when the shared memory is configured as server. Otherwise as client. }; /** * @brief Shared memory buffer used for reading. */ using CSharedMemBufferRx = CSharedMemBuffer; /** * @brief Shared memory buffer used for writing. */ using CSharedMemBufferTx = CSharedMemBuffer; template inline CSharedMemBuffer::CSharedMemBuffer(uint32_t uiSize /*= 0*/, const std::string& rssName /*= std::string()*/, bool bServer /*= true*/) : m_uiSize(bServer ? (uiSize ? uiSize : 128 * 1024) : 0), m_bServer(bServer) { // Create a name to be used in the connection string std::string ssDirectionString; if (bServer) ssDirectionString = TAccessor::GetAccessType() == EAccessType::rx ? "RESPONSE_" : "REQUEST_"; else ssDirectionString = TAccessor::GetAccessType() == EAccessType::rx ? "REQUEST_" : "RESPONSE_"; if (!rssName.empty()) { m_ssName = std::string("SDV_SHARED_") + ssDirectionString + rssName; m_ssSyncTx = std::string("SDV_TX_SYNC_") + ssDirectionString + rssName; m_ssSyncRx = std::string("SDV_RX_SYNC_") + ssDirectionString + rssName; } else { uint64_t uiCnt = std::chrono::high_resolution_clock::now().time_since_epoch().count(); m_ssName = std::string("SDV_SHARED_") + ssDirectionString + std::to_string(uiCnt); m_ssSyncTx = std::string("SDV_TX_SYNC_") + ssDirectionString + std::to_string(uiCnt); m_ssSyncRx = std::string("SDV_RX_SYNC_") + ssDirectionString + std::to_string(uiCnt); } // Create a path std::string ssNamePath = "/" + m_ssName; // std::string ssSyncTxPath = "/" + m_ssSyncTx; // std::string ssSyncRxPath = "/" + m_ssSyncRx; // Unlink just in case the last server had crashed and the mapping still exists. if (m_bServer) { shm_unlink((std::string("/") + m_ssName).c_str()); sem_unlink(m_ssSyncTx.c_str()); sem_unlink(m_ssSyncRx.c_str()); } // Initialize the semaphores if (bServer) { m_pSemaphoreTx = sem_open(m_ssSyncTx.c_str(), O_CREAT | O_EXCL, 0777 /*O_RDWR*/, 0); if (!m_pSemaphoreTx || m_pSemaphoreTx == SEM_FAILED) { m_ssError = "Failed to create new semaphore " + m_ssSyncTx + "."; return; } m_pSemaphoreRx = sem_open(m_ssSyncRx.c_str(), O_CREAT | O_EXCL, 0777 /*O_RDWR*/, 0); if (!m_pSemaphoreRx || m_pSemaphoreRx == SEM_FAILED) { m_ssError = "Failed to create new semaphore " + m_ssSyncRx + "."; return; } } else { m_pSemaphoreTx = sem_open(m_ssSyncTx.c_str(), 0); if (!m_pSemaphoreTx || m_pSemaphoreTx == SEM_FAILED) { m_ssError = "Failed to open existing semaphore " + m_ssSyncTx + "."; return; } m_pSemaphoreRx = sem_open(m_ssSyncRx.c_str(), 0); if (!m_pSemaphoreRx || m_pSemaphoreRx == SEM_FAILED) { m_ssError = "Failed to open existing semaphore " + m_ssSyncRx + "."; return; } } // Get shared memory file descriptor (NOT a file) if (bServer) { m_iFileDescr = shm_open(ssNamePath.c_str(), O_RDWR | O_CREAT, S_IRUSR | S_IWUSR); if (m_iFileDescr == -1) { m_ssError = "Failed to create the shared memory file descriptor " + ssNamePath + "."; return; } // Extend shared memory object as by default it's initialized with size 0 int iResult = ftruncate(m_iFileDescr, m_uiSize); if (iResult == -1) { m_ssError = "Failed to extend the shared memory."; return; } } else { m_iFileDescr = shm_open(ssNamePath.c_str(), O_RDWR, S_IRUSR | S_IWUSR); if (m_iFileDescr == -1) { m_ssError = "Failed to open the shared memory file descriptor " + ssNamePath + "."; return; } // Get the size of the shared memory struct stat sMemInfo{}; if (fstat(m_iFileDescr, &sMemInfo) == -1 || !sMemInfo.st_size) { m_ssError = "Failed to request the size of the shared memory file descriptor " + ssNamePath + "."; return; } m_uiSize = static_cast(sMemInfo.st_size); } // map shared memory to process address space m_pBuffer = reinterpret_cast(mmap(NULL, m_uiSize, PROT_READ | PROT_WRITE, MAP_SHARED, m_iFileDescr, 0)); if (!m_pBuffer || m_pBuffer == MAP_FAILED) { m_ssError = "Failed to map the shared memory in process address space."; return; } // If this is a server, the size causes the initialization. For a client, no initialization should take place (the server has // done so already). TAccessor::Attach(m_pBuffer, bServer ? m_uiSize : 0); TRACE("Accessed shared memory for ", m_ssSyncTx, " and ", m_ssSyncRx, "."); } template inline CSharedMemBuffer::CSharedMemBuffer(const std::string& rssConnectionString) { if (rssConnectionString.empty()) { m_ssError = "Missing connection string."; return; } // Interpret the connection string sdv::toml::CTOMLParser config(rssConnectionString); // The connection string can contain multiple parameters. Search for the first parameters fitting the accessor direction size_t nIndex = 0; sdv::toml::CNodeCollection nodeConnectParamCollection = config.GetDirect("ConnectParam"); do { sdv::toml::CNodeCollection nodeConnectParam; switch (nodeConnectParamCollection.GetType()) { case sdv::toml::ENodeType::node_array: if (nIndex >= nodeConnectParamCollection.GetCount()) break; nodeConnectParam = nodeConnectParamCollection[nIndex]; break; case sdv::toml::ENodeType::node_table: if (nIndex > 0) break; nodeConnectParam = nodeConnectParamCollection; break; default: break; } if (nodeConnectParam.GetType() != sdv::toml::ENodeType::node_table) break; nIndex++; // Check for shared memory if (nodeConnectParam.GetDirect("Type").GetValue() != "shared_mem") continue; // Check the direction if (nodeConnectParam.GetDirect("Direction").GetValue() != (TAccessor::GetAccessType() == EAccessType::rx ? "response" : "request")) continue; // Get the information m_ssName = static_cast(nodeConnectParam.GetDirect("Location").GetValue()); m_ssSyncTx = static_cast(nodeConnectParam.GetDirect("SyncTx").GetValue()); m_ssSyncRx = static_cast(nodeConnectParam.GetDirect("SyncRx").GetValue()); break; } while (true); if (m_ssName.empty() || m_ssSyncTx.empty() || m_ssSyncRx.empty()) { m_ssError = "Incomplete connection information."; return; } // Create a path std::string ssPath = "/" + m_ssName; // std::string ssSyncTxPath = "/" + m_ssSyncTx; // std::string ssSyncRxPath = "/" + m_ssSyncRx; // Get shared memory file descriptor (NOT a file) m_iFileDescr = shm_open(ssPath.c_str(), O_RDWR, S_IRUSR | S_IWUSR); if (m_iFileDescr == -1) { m_ssError = "Failed to open the shared memory file descriptor " + ssPath + "."; return; } // Get the size of the shared memory struct stat sMemInfo{}; if (fstat(m_iFileDescr, &sMemInfo) == -1 || !sMemInfo.st_size) { m_ssError = "Failed to request the size of the shared memory file descriptor " + ssPath + "."; return; } m_uiSize = static_cast(sMemInfo.st_size); // Map shared memory to process address space m_pBuffer = reinterpret_cast(mmap(NULL, m_uiSize, PROT_READ | PROT_WRITE, MAP_SHARED, m_iFileDescr, 0)); if (!m_pBuffer || m_pBuffer == MAP_FAILED) { m_ssError = "Failed to map the shared memory in process address space."; return; } // Initialize the semaphore m_pSemaphoreTx = sem_open(m_ssSyncTx.c_str(), 0); if (!m_pSemaphoreTx || m_pSemaphoreTx == SEM_FAILED) { m_ssError = "Failed to open existing semaphore " + m_ssSyncTx + "."; return; } m_pSemaphoreRx = sem_open(m_ssSyncRx.c_str(), 0); if (!m_pSemaphoreRx || m_pSemaphoreRx == SEM_FAILED) { m_ssError = "Failed to open existing semaphore " + m_ssSyncRx + "."; return; } TAccessor::Attach(m_pBuffer); TRACE("Opened shared memory for ", m_ssSyncTx, " and ", m_ssSyncRx, "."); } template CSharedMemBuffer::~CSharedMemBuffer() { // ATTENTION unmapping and unlinking will remove any connection to the shared memory within this process. When multiple // accessors are used, this will invalidate them immediately. if (m_pBuffer && m_pBuffer != MAP_FAILED) munmap(m_pBuffer, m_uiSize); if (m_bServer && !m_ssName.empty()) shm_unlink((std::string("/") + m_ssName).c_str()); if (m_iFileDescr >= 0) close(m_iFileDescr); if (m_bServer && m_pSemaphoreTx) sem_unlink(m_ssSyncTx.c_str()); if (m_pSemaphoreTx) sem_close(m_pSemaphoreTx); if (m_bServer && m_pSemaphoreRx) sem_unlink(m_ssSyncRx.c_str()); if (m_pSemaphoreRx) sem_close(m_pSemaphoreRx); } template void CSharedMemBuffer::Detach() { m_uiSize = 0u; m_iFileDescr = 0; m_ssName.clear(); m_pBuffer = nullptr; m_ssSyncTx.clear(); m_pSemaphoreTx = nullptr; m_ssSyncRx.clear(); m_pSemaphoreRx = nullptr; m_ssError.clear(); } template inline std::string CSharedMemBuffer::GetConnectionString() const { // The connection string contains the TOML file for connecting to this shared memory. std::stringstream sstream; sstream << "[[ConnectParam]]" << std::endl; sstream << "Type = \"shared_mem\"" << std::endl; sstream << "Location = \"" << m_ssName << "\"" << std::endl; sstream << "SyncTx = \"" << m_ssSyncTx << "\"" << std::endl; sstream << "SyncRx = \"" << m_ssSyncRx << "\"" << std::endl; // The target direction is the opposite of the direction of the accessor. Therefore, if the accessor uses an RX access type, // the target uses an TX access type and should be configured as response, otherwise it is a request. sstream << "Direction = \"" << (TAccessor::GetAccessType() == EAccessType::rx ? "request" : "response") << "\"" << std::endl; return sstream.str(); } template inline void CSharedMemBuffer::TriggerDataSend() { if (!m_pSemaphoreTx || m_pSemaphoreTx == SEM_FAILED) return; sem_post(m_pSemaphoreTx); } template inline bool CSharedMemBuffer::WaitForData(uint32_t uiTimeoutMs) const { if (!m_pSemaphoreTx || m_pSemaphoreTx == SEM_FAILED) return false; // Check whether there is data; if so, return true. if (TAccessor::HasUnreadData()) return true; // Get the time from the realtime clock timespec sTimespec{}; if (clock_gettime(CLOCK_REALTIME, &sTimespec) == -1) return false; uint64_t uiTimeNs = sTimespec.tv_nsec + uiTimeoutMs * 1000000ull; sTimespec.tv_nsec = uiTimeNs % 1000000000ull; sTimespec.tv_sec += uiTimeNs / 1000000000ull; // Wait for the semaphore int iResult = sem_timedwait(m_pSemaphoreTx, &sTimespec); if (iResult < 0) return false; return true; } template inline void CSharedMemBuffer::TriggerDataReceive() { if (!m_pSemaphoreRx || m_pSemaphoreRx == SEM_FAILED) return; sem_post(m_pSemaphoreRx); } template inline bool CSharedMemBuffer::WaitForFreeSpace(uint32_t uiTimeoutMs) const { if (!m_pSemaphoreRx || m_pSemaphoreRx == SEM_FAILED) return false; // Get the time from the realtime clock timespec sTimespec{}; if (clock_gettime(CLOCK_REALTIME, &sTimespec) == -1) return false; uint64_t uiTimeNs = sTimespec.tv_nsec + uiTimeoutMs * 1000000ull; sTimespec.tv_nsec = uiTimeNs % 1000000000ull; sTimespec.tv_sec += uiTimeNs / 1000000000ull; // Wait for the semaphore int iResult = sem_timedwait(m_pSemaphoreRx, &sTimespec); if (iResult < 0) return false; if (TAccessor::Canceled()) return false; return true; } #endif // !defined POSIX_SHARED_MEM_BUFFER_H